Toward the modeling of mucus draining from human lung: role of airways deformation on air-mucus interaction
نویسندگان
چکیده
Chest physiotherapy is an empirical technique used to help secretions to get out of the lung whenever stagnation occurs. Although commonly used, little is known about the inner mechanisms of chest physiotherapy and controversies about its use are coming out regularly. Thus, a scientific validation of chest physiotherapy is needed to evaluate its effects on secretions. We setup a quasi-static numerical model of chest physiotherapy based on thorax and lung physiology and on their respective biophysics. We modeled the lung with an idealized deformable symmetric bifurcating tree. Bronchi and their inner fluids mechanics are assumed axisymmetric. Static data from the literature is used to build a model for the lung's mechanics. Secretions motion is the consequence of the shear constraints apply by the air flow. The input of the model is the pressure on the chest wall at each time, and the output is the bronchi geometry and air and secretions properties. In the limit of our model, we mimicked manual and mechanical chest physiotherapy techniques. We show that for secretions to move, air flow has to be high enough to overcome secretion resistance to motion. Moreover, the higher the pressure or the quicker it is applied, the higher is the air flow and thus the mobilization of secretions. However, pressures too high are efficient up to a point where airways compressions prevents air flow to increase any further. Generally, the first effects of manipulations is a decrease of the airway tree hydrodynamic resistance, thus improving ventilation even if secretions do not get out of the lungs. Also, some secretions might be pushed deeper into the lungs; this effect is stronger for high pressures and for mechanical chest physiotherapy. Finally, we propose and tested two a dimensional numbers that depend on lung properties and that allow to measure the efficiency and comfort of a manipulation.
منابع مشابه
Toward the modeling of mucus draining from the human lung: role of the geometry of the airway tree.
Mucociliary clearance and cough are the two main natural mucus draining methods in the bronchial tree. If they are affected by a pathology, they can become insufficient or even ineffective, then therapeutic draining of mucus plays a critical role to keep mucus levels in the lungs acceptable. The manipulations of physical therapists are known to be very efficient clinically but they are mostly e...
متن کاملMucus clearance as a primary innate defense mechanism for mammalian airways.
The conducting airways branch 20–25 times between the trachea and the alveoli as inhaled air passes from the relatively constricted nasal/tracheal passages to the large surface area of alveoli (70 m2), where gas exchange occurs. This branching anatomy leads to a surface area that expands greatly from proximal airways (e.g., third generation; ∼50 cm2) to distal airways (20th to 25th generation; ...
متن کاملThe damaging role of bacteria in chronic lung infection.
Because of their embryological derivation from foregut the respiratory airways are regularly host to bacteria arriving in inspired air and aspirated from the naso-oropharynx. Should the first-line defence (mucociliary clearance) be less than perfect, such bacteria remain longer in the airway mucus and some are able to capitalize on this delay by compromising mucus transport further through the ...
متن کاملIndoleamine 2,3-dioxygenase in lung dendritic cells promotes Th2 responses and allergic inflammation.
Indoleamine 2,3 dioxygenase (IDO) has emerged as an important mediator of immune tolerance via inhibition of Th1 responses. However, the role of IDO in antigen-induced tolerance or allergic inflammation in the airways that is regulated by Th2 responses has not been elucidated. By using IDO(-/-) mice, we found no impairment of airway tolerance, but, surprisingly, absence of IDO provided signific...
متن کاملMuc5b and Muc5ac are the major oligomeric mucins in equine airway mucus.
Horses frequently suffer from respiratory diseases, which, irrespective of etiology, are often associated with airway mucus accumulation. Studies on human airways have shown that the key structural components of the mucus layer are oligomeric mucins, which can undergo changes of expression and properties in disease. However, there is little information on these gel-forming glycoproteins in hors...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015